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Lyngbyacyclamides A (1) and B (2), novel cyclic peptides, were isolated from marine cyanobacteria Lyn-
gbya sp. collected in Okinawa, Japan. Their structures were determined by spectroscopic analyses and
degradation studies. They moderately inhibited the growth of B16 mouse melanoma cells.
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Cyanobacteria are photosynthetic prokaryotes that are widely
distributed throughout marine and terrestrial environments.
Members of the marine cyanobacteria genus Lyngbya are known
to produce structurally interesting and biologically active second-
ary metabolites. Typically, linear/cyclic peptides and depsipeptides
that include various nonproteinogenic amino acids are the major
groups of these metabolites, which can exhibit potent cytotoxicity
as represented by apratoxins,1 bisebromoamide,2 and laxaphyc-
ins.3 We report here the isolation, structural determination, and
biological activities of the novel cyclic peptide lyngbyacyclamides
A (1) and B (2) (Fig. 1) from marine cyanobacteria Lyngbya sp.

Lyngbya sp. was collected at the Ishigaki Island, Okinawa Prefec-
ture, Japan. The collected organism (500 g wet wt) was extracted
with 80% aqueous ethanol (1 L) for 30 days. The extract was fil-
tered, concentrated, and partitioned between EtOAc and water.
The EtOAc-soluble material was further partitioned between 90%
aqueous MeOH and hexane. The material obtained from the aque-
ous MeOH portion was subjected to fractionation using silica gel
column chromatography (MeOH/CHCl3), ODS column chromatog-
raphy (MeOH/water), preparative TLC (silica gel, 15% MeOH/
CHCl3), and reversed-phase HPLC (Develosil ODS-HG-5, 40% aque-
ous acetonitrile) to give lyngbyacyclamides A (1) (44 mg) and B (2)
(39 mg).

Lyngbyacyclamide A4 was isolated as a colorless amorphous so-
lid with a molecular formula of C69H114N14O19 on the basis of
HRFABMS at m/z 1443.8462 [M+H]+ (calcd for C69H115N14O19,
ll rights reserved.
1443.8463). The 1H and 13C NMR spectra (Table 1) displayed char-
acteristic peptide signals including a-protons of amino acid resi-
dues (dH 4.0–5.0), amide protons (dH 6.8–8.2), doublet methyl
protons (dH 0.7–1.1), and 14 carbonyl carbons (dC 168–182).
Automated amino acid analysis of 1 suggested the presence of
the proteinogenic amino acids Phe, Leu, Val, Thr (�2), Pro, and
Gln/Glu, as well as some nonproteinogenic amino acids. The struc-
tures of these amino acid residues were identified by 2D NMR
Figure 1. Structures of lyngbyacyclamides A (1) and B (2).
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Table 1
1H (500 MHz) and 13C NMR (125 MHz) data for lyngbyacyclamides A (1) and B (2) in DMSO-d6

Entry Position 1 2

13C 1H multi (J, Hz) 13C 1H multi (J, Hz)

Phe 1 171.0 sa 171.0 s
2 53.9 d 4.67 m 53.9 d 4.66 m
3 38.5 t 2.74 dd (9.2, 13.5), 3.01 dd (5.8, 13.5) 38.6 t 2.72 dd (9.8, 13.2), 2.97 m
4 137.6 s 137.6 s
5, 9 128.1 d 7.21 m 128.1 d 7.21 m
6, 8 129.5 d 7.21 m 129.5 d 7.21 m
7 126.4 d 7.16 m 126.4 d 7.17 m
NH 8.04 d (7.7) 8.12 d (7.4)

Pro/hyPro 1 171.4 s 171.4 s
2 59.5 d 4.29 m 58.7 d 4.35 m
3 29.4 t 1.36 m, 1.82 m 37.8 t 1.41 m, 1.79 m
4 24.2 t 1.63 m, 1.70 m 68.7 d 4.13 m
5 47.4 t 3.53 m, 3.65 td (7.5, 9.4) 55.6 t 3.53 dd (4.0, 10.9), 3.61 dd (4.6, 10.9)
OH 5.01 d (2.9)

Thr-1 1 168.6 s 168.8 s
2 56.1 d 4.35 m 56.2 d 4.39 m
3 66.6 d 3.86 m 66.7 d 3.82 m
4 19.1 q 1.04 d (6.0) 19.1 q 1.02 d (6.2)
OH 4.94 d (4.3) 4.83 d (4.0)
NH 7.07 d (6.9) 7.05 d (7.4)

hyAsn 1 169.5 s 169.4 s
2 55.9 d 4.58 dd (1.8, 8.3) 56.1 d 4.59 dd (1.7, 8.0)
3 70.7 d 4.64 d (1.8) 70.7 d 4.34 m
CONH2 173.8 s 7.32 s 173.8 s 7.32 s
OH 5.89 br 5.89 br
NH 7.64 d (8.3) 7.72 d (7.5)

NMeIle 1 170.6 s 170.7 s
2 60.0 d 4.68 m 60.1 d 4.70 m
3 31.7 d 1.90 m 31.9 d 1.89 m
4 24.1 t 1.25 m 24.2 t 1.25 m
5 10.6 q 0.75 t (7.2) 10.6 q 0.75 t (7.5)
6 15.3 q 0.74 d (6.6) 15.3 q 0.74 d (7.4)
N-Me 30.3 q 2.95 s 30.5 q 2.99 s

Gln 1 172.7 s 172.7 s
2 49.1 d 4.54 m 49.0 d 4.56 m
3 26.2 t 1.71 m, 1.88 m 26.2 t 1.72 m, 1.91 m
4 31.0 t 2.09 m 30.9 t 2.12 m
CONH2 175.1 s 6.85 br s, 7.25 br s 175.1 s 6.85 br s, 7.25 br s
NH 7.95 d (6.6) 7.93 d (6.9)

Leu 1 172.0 s 172.0 s
2 51.8 d 4.18 m 51.7 d 4.22 m
3 40.9 t 1.33 m, 1.47 m 41.1 t 1.36 m, 1.46 m
4 24.1 d 1.58 m 24.2 d 1.55 m
5 21.5 q 0.79 d (6.6) 21.5 q 0.79 d (6.3)
6 23.2 q 0.84 d (6.9) 23.2 q 0.84 d (6.9)
NH 7.84 d (7.8) 7.84 d (6.3)

Hse 1 171.5 s 171.5 s
2 50.7 d 4.30 m 50.7 d 4.32 m
3 34.9 t 1.70 m, 1.85 m 34.9 t 1.73 m, 1.85 m
4 57.6 t 3.30 m, 3.42 m 57.7 t 3.32 m, 3.42 m
OH 4.47 t (5.2) 4.46 t (5.2)
NH 7.80 d (7.2) 7.84 d (6.3)

hyLeu 1 171.2 s 171.3 s
2 55.7 d 4.33 m 55.7 d 4.33 m
3 76.9 d 3.47 t (8.6) 76.8 d 3.48 t (7.5)
4 30.8 d 1.57 m 30.7 d 1.59 m
5 19.1 q 0.77 d (6.6) 19.1 q 0.77 d (6.9)
6 19.4 q 0.91 d (6.6) 19.4 q 0.92 d (6.3)
OH 4.68 s 4.68 s
NH 7.96 d (7.2) 7.99 d (8.0)

Val 1 171.7 s 171.7 s
2 59.3 d 4.03 t (7.4) 59.3 d 4.04 t (7.4)
3 29.8 d 1.96 m 29.8 d 1.97 m
4 18.8 q 0.90 d (6.9) 18.8 q 0.90 d (6.9)
5 19.3 q 0.85 d (6.6) 19.3 q 0.86 d (6.3)
NH 8.10 d (7.2) 8.12 d (7.4)

Ada 1 171.2 s 171.4 s
2 40.5 t 2.25 dd (7.2, 14.0), 2.45 dd (6.0, 14.0) 40.3 t 2.26 dd (6.9, 13.8), 2.46 dd (5.7, 13.8)
3 46.4 d 4.05 m 46.4 d 4.04 m
4 34.1 t 1.30 m, 1.40 m 34.0 t 1.30 m, 1.43 m
5 31.4 t 1.20 m 31.4 t 1.20 m
6 29.0 t 1.20 m 29.0 t 1.20 m
7 28.8 t 1.20 m 28.8 t 1.20 m
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Table 1 (continued)

Entry Position 1 2

13C 1H multi (J, Hz) 13C 1H multi (J, Hz)

8 25.4 t 1.20 m 25.4 t 1.20 m
9 22.3 t 1.20 m 22.3 t 1.20 m
10 14.1 q 0.83 t (6.9) 14.1 q 0.83 t (6.9)
NH 7.56 d (8.9) 7.62 d (8.6)

Thr-2 1 168.8 s 168.8 s
2 57.9 d 4.12 dd (3.7, 8.1) 58.0 d 4.15 m
3 66.6 d 3.88 m 66.7 d 3.86 m
4 14.1 q 0.82 d (6.9) 19.4 q 0.86 d (6.8)
OH 4.84 d (4.9) 4.87 d (4.6)
NH 7.92 d (8.1) 7.95 d (7.5)

a Multiplicity was based on the DEPT and HMQC spectra.
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spectroscopic analyses. TOCSY and HMBC spectra enabled the con-
struction of proteinogenic amino acids with Gln, and four partial
structures of nonproteinogenic amino acids were assigned as N-
methyl Ile (NMeIle), b-hydroxy leucine (hyLeu), b-hydroxy aspara-
gine (hyAsn), and homoserine (Hse). The presence of a b-amino
decanoic acid (Ada) was determined from TOCSY and HSQC-TOCSY
data that showed a series of spin systems with a-CH2 (dH 2.25,
2.45), b-CH (dH 4.05), b-NH (dH 7.56), c-CH2 (dH 1.30, 1.40), five
internal methylenes (dH 1.20, dC 22.3, 25.4, 28.8, 29.0, 31.4), and
a terminal methyl group (dH 0.83). The NMR assignments were
supported by the LC/MS analysis for degradation products of 1 by
HCl hydrolysis, which showed 11 [M+H]+ ion peaks at m/z 116.0
(Pro), 118.1 (Val), 120.2 (Hse), 120.2 (Thr), 132.1 (Leu), 146.1
(NMeIle), 148.2 (hyLeu), 148.3 (Glu), 150.2 (hyAsp), 166.1 (Phe),
and 188.2 (Ada). The HMBC correlations from amide protons, N-
methyl protons, and a-protons to carbonyl carbons allowed us to
connect each amino acid residue in two fragments, Leu-Gln-NMe-
Ile-hyAsn-Thr-1 and Phe-Thr-2-Ada-Val-hyLeu-Hse (Fig. 2). These
fragments were connected via Hse-Leu amide bond suggested by
the cross-peak observed in the NOESY spectrum between the a-
proton of Hse (dH 4.30) and the NH proton of Leu (dH 7.84). Finally,
the NOESY cross-peaks between the a-proton of Pro (dH 4.30) and
the amide proton of Phe (dH 8.04), and between the d-protons of
Pro (dH 3.53, 3.65) and the a-proton of Thr-1 (dH 4.35) allowed
us to elucidate the Phe-Pro-Thr-1 connection and that the struc-
ture of 1 as a cyclic peptide consists of 12 amino acid residues.

Lyngbyacyclamide B5 was isolated as a colorless amorphous so-
lid with a molecular formula of C69H114N14O20 on the basis of
HRFABMS m/z 1459.8407 [M+H]+ (calcd for C69H115N14O20,
1459.8412). The 1H and 13C NMR spectra of 2 were similar to those
of 1. Significant differences were found with regard to the proline
residue with a downfield shift at c-CH (dH 4.13, dC 68.7). The COSY
correlation of the c-proton and hydroxy proton (dH 5.01) revealed
Figure 2. Partial structures of 1, based on 2D NMR correlations.
the presence of 4-hydroxy proline (hyPro) in 2 instead of proline.
The NOESY correlation of a hydroxy proton and an a-proton of hy-
Pro revealed a trans relationship between the hydroxy group and
the carbonyl group. TOCSY, HMBC, HSQC-TOCSY, and NOESY anal-
yses led us to construct the same planar structures as those for 1
except for the proline.

The absolute configurations of the amino acid residues were
determined by Marfey’s analysis.6 Hydrolysis (105 �C, 6 N HCl,
12 h) of 1 followed by the Marfey’s derivatization and HPLC analy-
ses7,8 revealed that the configurations were L-Val, L-Thr, L-Pro, L-
Gln, L-Hse, L-NMeIle, D-Phe, and D-Leu. The stereochemistries of 2
were determined according to the same protocol as that used for
1. The HPLC analyses9 showed the presence of L-hyPro and the
same configurations for L-Val, L-Thr, L-Gln, L-Hse, L-NMeIle, D-Phe,
and D-Leu as for 1. The absolute configurations of hyLeu, hyAsn,
and Ada residues are still being elucidated.

The biological activities of 1 and 2 were examined with regard
to cytotoxicity against B16 mouse melanoma cells and toxicity
against brine shrimp (genus Artemia). After incubation, 1 and 2
showed potency with an IC50 of 0.7 lM against the B16 cells.
Meanwhile, they did not show definite toxicity at 70 lM against
brine shrimp.

In summary, we isolated lyngbyacyclamides A (1) and B (2)
from marine cyanobacteria Lyngbya sp. With the use of spectro-
scopic analyses and degradation reactions, 1 and 2 were deter-
mined to be novel cyclic peptides. Their structures resemble
those of the natural products laxaphycin B3 and lobocyclamide
C.10 The biological activities of 1 and 2 are quite interesting, since
they showed significant cytotoxicity toward B16 cells but no toxic-
ity toward brine shrimp.
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